Chromatographic Resolution of Racemic Compounds Containing Phosphorus or Sulfur Atom as Chiral Center

Yoshio Okamoto,* Shiro Honda, Koichi Hatada, Ichiro Okamoto, Yuzo Toga,† and Shiro Kobayashi*,†

Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560 Research Center, Daicel Chemical Industries, Ltd., Aboshi-ku, Himeji, Hyogo 671-12 ^{††}Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606 (Received December 15, 1983)

Racemic compounds containing a phos-Synopsis. phorus or a sulfur atom as a chiral center were resolved by high-performance liquid chromatography on optically active (+)-poly(triphenylmethyl methacrylate). The resolved compounds include insecticides such as O-ethyl O-(4-nitrophenyl) phenylphosphonothionate (EPN), O-(4-cyanophenyl)-O-ethyl phenylphosphonothionate (cyanofenfos), and 2-methoxy-4H-1,3,2-benzo-dioxaphosphorin 2-sulfide (salithion).

Optically active poly(triphenylmethyl methacrylate) (PTrMA)¹⁾ has been used as an effective chiral packing material for liquid chromatographic resolution of various racemic compounds, 2-9) most of which possess an asymmetric carbon. Here, we wish to report the resolution of racemic compounds containing a phosphorus or a sulfur atom as the asymmetric center using highperformance liquid chromatography (HPLC) with a (+)-PTrMA column.

Recently, Pirkle and coworkers successfully resolved racemic sulfoxides on their chiral HPLC column. 10) However, liquid chromatographic resolution of racemic phosphoric compounds has not so far been reported.

Experimental

The synthesis of compounds 1-5 in Table 1 has been carried out in the following manner. 1: Preparation procedures were similar to those in a literature. 11) Methyl methyl-(phenyl)phosphinate was reacted with benzylmagnesium chloride in diethyl ether to give a crude product which was purified by chromatography (silica gel) to give white solid 1; ³¹P NMR (CDCl₃ with external standard of 85% H_3PO_4) δ = 35.2 (single peak). ¹H NMR (CDCl₃) δ =1.60 (d, J=12 Hz, 3H), 3.20 (d, J=15 Hz, 2H), 6.83-7.75 (m, 10H). IR (Nujol) 1297, 1175, 1115, 920, 897, 770, 740 cm⁻¹. TLC (acetone) R_f 0.5. 2: Similarly, methyl methyl(phenyl)phosphinate was allowed to react with 1-naphthylmagnesium bromide, giving rise to a solid product 2 after purification by chromatography. 3: The hydrolysis of a spirophosphonane, 5-phenyl-1,4,6-trioxa-5-phosphaspiro[4.4]nonan-7-one, gave 2-hydroxyethyl (2-carboxyethyl)phenylphosphinate (mp 75-76°C) whose esterification with diazomethane produced 3. 4: Phenylphosphonic dichloride was treated with an equimolar amount of ethanol in the presence of triethylamine in benzene followed by a further reaction with an equimolar amount of methanol in the presence of triethylamine in benzene to give 4, bp 69—72 °C/0.2 mmHg**. 5: Phenylphosphonic dichloride was subjected to reaction with an equimolar amount of cyclohexanol and then with methanol (equimol.) in the presence of pyridine in benzene to give 5, bp, 105- $110 \,^{\circ}\text{C}/0.2 \,\text{mmHg}$. ³¹P NMR (CDCl₃) $\delta = 19.1 \,\text{(single peak)}$.

¹H NMR (CDCl₃) δ =1.00-2.05 (m, 10H), 3.60(d, I=11 Hz. 3H), 4.33 (br, 1H), 7.28—7.95 (m, 5H). IR (neat) 2930, 2850, 1440, 1245, 1130, 1050, 990, 800, 557 cm⁻¹. TLC (diethyl ether) $R_{\rm f} = 0.6$.

Compounds 6-9 were commercially obtained.

The preparations of (+)-PTrMA¹² and the packing material4) for HPLC were described previously. The resolution was accomplished with a JASCO TRIROTOR II chromatograph equipped with a UV detector at 15°C, methanol (0.5 ml/min) being used as eluent.

Results and Discussion

Figure 1 shows the chromatograms of the resolution of 2-hydroxyethyl [2-(methoxycarbonyl)ethyl] phenylphosphinate (3), O-ethyl O-(4-nitrophenyl) phenylphosphonothionate (EPN, 6), and 2-methoxy-4H-1,3,2-benzo-dioxaphosphorin 2-sulfide (salithion, 8) on (+)-PTrMA columns; the results are summarized in Table 1 together with the data for the resolution of other racemic compounds. Most compounds in Table 1 were resolved on (+)-PTrMA. The separation factor α was increased by the addition of water to the eluent, suggesting that the chiral recognition ability of (+)-PTrMA is enhanced in a polar medium, probably due to the stronger hydrophobic interaction between the polymer and enantiomers. Phosphinate 3 was resolved most effectively. Insecticides, 6, O-(4-cyanophenyl) Oethyl phenylphosphonothionate (cyanofenfos, 7), and 8 were also resolved. Although optically active isomers of 6 and 7 have already been prepared and the difference of the biological activities between the optical an-

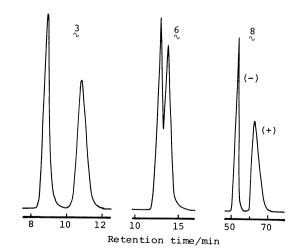


Fig. 1. Chromatograms of the resolution of 3, 6, and 8 on (+)-PTrMA columns. (Column: 25 cm × 0.46 (id) cm for 3 and 6; $50 \text{ cm} \times 0.72$ (id) cm for 8, dead times of two columns were 6.4 and 30 min, respectively).

l mmHg≈133.322 Pa.

Note added in proof. After submission of this Note, the optical isomers of 8 and their insecticidal activity were reported. A. Hirashima and M. Eto, Agric. Biol. Chem., **47**, 2831 (1983).

Table 1. Resolution of racemic compounds on (+)-PTrMA columns^{a)}

(1)-1 THAIL COLUMNS				
Entr	y Compound	k1'b)	α ^{c)}	$R_{\mathfrak s}^{\mathrm d)}$
1 2	$ \begin{array}{c} O \\ \parallel \\ Ph-P-CH_2Ph \\ CH_3 \\ O \\ Ph-P \\ CH_3 \end{array} $	0.62 1.68°(+) 10 ^{f)} 0.78(-)	≈1 1.09 ^{e)} 1.14 ^{f)} 1.14	≈0.4 ^{e)} 0.84 ^{f)} ≈0.5
3	$ \begin{array}{c} O \\ Ph-P-(CH_2)_2 CO_2 CH_3 \\ O-(CH_2)_2 OH \\ O \\ \parallel \end{array} $	0.41(-) ^{g)}	1.79	2.33
4	$Ph-P-OC_2H_5$	0.43	≈l	
5	OCH ₃ O Ph-P-O-H OCH ₃	1.85	1.11	0.80
6	Ph-P-O-NO.	1.03(+)	1.14	0.77
0	$\operatorname{OC}_2 \operatorname{H}_5$			0.77
7	Ph-P-O-CN	1.09(+) 17 ^{e)}	1.10	≈0.3
8	OC ₂ H ₅ S P-OCH ₃	17 ^{e)} 0.35 ^{h)} (-)		0.67 ^{e)}
9	O 	0.20(-) 0.74 ^{e)} (-)	≈1 1.19 ^{e)}	0.87 ^{e)}

a) Column: $25 \text{ cm} \times 0.46(\text{id})\text{cm}$. b) k' (capacity factor to less retained enantiomer)=(retention time of less retained enantiomer—dead time)/dead time; the sign in parenthesis is that of the optical rotation at 365 nm. c) α (separation factor)=(capacity factor to more retained enantiomer)/ k_1 '. d) Resolution factor= $2\times$ (difference of retention times of more and less retained enantiomers)/(sum of the band width of the two enantiomer peaks). e) Eluent: CH₃OH-H₂O(80:20). f) Eluent: CH₃OH-H₂O(60:40). g) Elipticity of the CD spectrum at 263 nm. h) Column ($50 \text{ cm} \times 0.72(\text{id})\text{cm}$).

tipodes has been studied, 13,14) optical isomers of **8** and their activity have not yet been reported.*** These isomers are expected to show different biological activity.

Phenyl vinyl sulfoxide (9) was not separated with methanol as eluent but was resolved with methanol-water (80:20).

These results suggest that the (+)-PTrMA column is useful for the resolution of racemic compounds having heteroatoms.

The authors thank to Dr. Yukitoshi Narukawa for the help in preparation of the phosphorus compounds. A part of this work was supported by a Grant-in-Aid for Developmental Scientific Research No.58850188 from the Ministry of Education, Science and Culture.

References

- 1) Y. Okamoto, K. Suzuki, K. Ohta, K. Hatada, and H. Yuki, J. Am. Chem. Soc., 101, 4763 (1979).
- 2) H. Yuki, Y. Okamoto, and I. Okamoto, *J. Am. Chem. Soc.*, **102**, 6356 (1980).
- 3) Y. Okamoto, I. Okamoto, and H. Yuki, *Chem. Lett.*, 1981, 835.
- 4) Y. Okamoto, S. Honda, I. Okamoto, H. Yuki, S. Murata, R. Noyori, and H. Takaya, J. Am. Chem. Soc., 103, 6971 (1981).
- 5) M. Nakazaki, K. Yamamoto, and M. Maeda, Chem. Lett., 1980, 1553; J. Org. Chem., 46, 1985 (1981).
- 6) R. Noyori, N. Sano, S. Murata, Y. Okamoto, H. Yuki, and I. Ito, *Tetrahedron Lett.*, 23, 2969 (1982).
- 7) Y. Kawada, H. Iwamura, Y. Okamoto, and H. Yuki, Tetrahedron Lett., 24, 791 (1983).
- 8) M. Nakazaki, K. Yamamoto, T. Ikeda, T. Kitsuki, and Y. Okamoto, J. Chem. Soc., Chem. Commun., 1983, 787.
- 9) Y. Okamoto, S. Honda, E. Yashima, and H. Yuki, Chem. Lett., 1983, 1221.
- 10) W. H. Pirkle, J. M. Finn, B. C. Hamper, J. Schreiner, and J. R. Pribish, ACS Symp. Ser., No. 185, 245 (1982).
- 11) O. Korpium, R. A. Lewis, J. Chickos, and K. Mislow, J. Am. Chem. Soc., **90**, 4842 (1968).
- Am. Chem. Soc., **90**, 4842 (1908). 12) Y. Okamoto, H. Shohi, and H. Yuki, *J. Polym. Sci.*
- Polym. Lett. Ed., 21, 601 (1983).
 13) H. Ohkawa, N. Mikami, and J. Miyamoto, Agric. Biol.
- 13) H. Ohkawa, N. Mikami, and J. Miyamoto, *Agric. Biol Chem.*, **41**, 369 (1977).
- 14) H. Ohkawa, N. Mikami, Y. Okuno, and J. Miyamoto, Bull. Environ. Contaminat. Toxicol., 18, 534 (1977).